

10, Institutional Area, Vasant Kunj, New Delhi 110070

52nd MEETING OF THE ACADEMIC COUNCIL

MINUTES OF THE FIFTY SECOND MEETING OF THE ACADEMIC COUNCIL HELD ON 08 AUGUST 2022 AT 10.00 A.M.

PRESENT

The following members of the Academic Council attended the meeting:

Members

Special Invitee

Dr Shashi Bhushan Tripathi

Professor Prateek Sharma, Chairperson Professor Shaleen Singhal Professor Anandita Singh Professor Ramakrishnan Sitaraman Professor Sagnik Dev Mr Shubhashis Dey Dr Sabhyata Bhatia Professor Vinay Shankar Prasad Sinha Professor Arun Kansal Dr Sudipta Chatterjee Dr Naqui Anwer Dr Sukanya Das Dr Chaithanya Madhurantakam Dr Anu Rani Sharma Dr Montu Bose Dr Chander Kumar Singh Dr Seema Sangita, Controller of Examination Mr Kamal Sharma, Secretary

Prof. P.S.N. Rao, Prof Shreekant Gupta, Mr Manoj Chugh, Mr Rajesh Ayapilla, Mr Rahul Mittal and Dr Sapan Thapar could not attend the meeting.

Prof Prateek Sharma welcomed the Academic Council members and introduced the new external members who have been included in the Academic Council and hoped that the institution would be benefited with their experience and valuable inputs before requesting the Registrar to take up the agenda items.

Item No. 1: To confirm the minutes of the Fifty First Meeting of the Academic Council held on 28 April 2022. The minutes of the Fifty First Meeting of the Academic Council, held on 28 April 2022, were circulated to the members. No comments have been received so far.

The Academic Council may, therefore, consider confirming the minutes, as circulated.

- **TS/AC/52.1.1** The Council resolved that the minutes of the 51st Academic Council Meeting held on 28 April 2022 be confirmed.
- Item No. 2: To consider and approve courses to be offered in the Semester 3 of M.Sc. Biotechnology Programme. Dr. Shashi Bhushan Tripathi presented the courses to be offered in the third semester of M.Sc Biotechnology Programme offered by the Department of Biotechnology commencing from 17 August 2022. Prof. Tripathi requested the Academic Council to approve the below-mentioned six courses which are placed at Enclosure 1. He further stated that these courses were approved by the Board of Studies.
 - 1. Bioprocess Engineering and Environmental Biotechnology
 - 2. Functional Genomics in Plants
 - 3. Gene Expression Analysis and Transcriptomics
 - 4. Proteomics and Protein Engineering
 - 5. Bioethics, IPR and Regulations in Biotechnology
 - 6. Biotechnology Laboratory- Part 3

The members while approving the courses suggested that format of the courses should be uniform which may be looked into.

TS/AC/52.2.1 The Academic Council resolved to approve the courses to be offered in the Semester 3 of M.Sc. Biotechnology programme offered by the Department of Biotechnology as placed at Enclosure 1.

Item No. 3: Any other item with the permission of the Chair.

- (a) Prof. Prateek Sharma informed the members about the concept of Academic Bank of Credits. He also brought to the notice of the members that participants of few short-term training programmes having requisite number of credit hours can also earn credit, once approved by the Academic Council. He cited example of Entrepreneurship on Solid Waste Management. Prof. Arun Kansal informed that it has been designed to cater to the needs of the mid-career professionals. Prof. Kansal further informed that it is intended to make this course as an elective course with credit for students to benefit from it and the same will be put up to the Academic Council for approval through Board of Studies.
- (b) Prof Sagnik Dey stated we can look for short term courses in the field of air quality management as well as air pollution epidemiology or in general environmental epidemiology in the country. In this regard we can have discussion with CAPS India Network.

- (c) Mr Shubhashis Dey stated that short term courses can be focussed to train policymakers as TERI SAS already has expertise in this area. He emphasised the need of collaboration with few foreign universities in this regard. He also mentioned that there is a need to look at carbon credits or green credits as well.
- (d) Dr Sabhyata Bhatia opined that short-term certificate courses could be initiated on Informatics/ Bioinformatics as OMICs approaches underpin every aspect of biological sciences. She mentioned that analysis of voluminous genomics/NGS, transcriptomics, and proteomics data is the need of the Biotech industry in current times. Informatics courses will be therefore popular. Dr Bhatia also suggested that short-term courses be designed around biotechnology management aspects since industries are not limited to R&D but also deal in sales, marketing, etc. and hence these courses would be useful.
- (e) Dr Naqui Anwer informed the members that TERI SAS had applied for reassessment of NAAC in the month of December 2021 after addressing the queries related to Data Validation and Verification (DVV). We have made payments and have proposed to them three dates the first being 23rd to 25th August and the next two dates are 15 days apart. We are expecting to hear about the visit of the Pear Team shortly.

Prof. Prateek Sharma thanked all the members for providing their valuable inputs and stated that he looks forward to their continued support.

There being no other items for discussion, the meeting was adjourned with a vote of thanks to the Chair at 1230 hours.

Sd/ Kamal Sharma Registrar (Acting)

Enclosure:-Enclosure 1. Course outline of Semester 3 of M.Sc. Biotechnology programme

Distribution:-Electronic Copy:

- 1. Vice Chancellor, TERI School of Advanced Studies
- 2. All members of Academic Council
- 3. Website

Printed Copy: Registrar Office

Enclosure 1

Course tit	tle: Bioprocess Engineering and Environmental Biotechnology							
Course code: BBP162No. of credits: 3L-T-P: 30-15-0Learning hours: 45								
Pre-requisite course code and title (if any): Science graduate								
Department: Department of Biotechnology								
Course coordinator: Course instructor								
Contact d	letails:							
Course ty	pe: Elective Course offered in: Semester 3							
Course de	escription:							
The cours	se aims to provide students with methods employed in bio	proces	s engin	leering	and			
environme	ental biotechnology. The course is structured to provide the s	tudents	with f	undame	ntal			
concepts	connected to systems metabolic engineering, bio separat	10n, b	ioprosp	ecting	and			
bioprocess	sing, biofuels, and bioreactors. This course will offer the side of and industrial historic	alegy	a broa	id sense	10 t			
understand	ung on emerging methods used in food and industrial biotechn	ology u	ising di	iierent c	ase			
Course of	ninetizar.							
	Decuves.	noorina	and ev	nthatic				
I. A	ology	leering	and syn	limenc				
2 E	amiliarization students with <i>unstream and downstream</i> process	ing of r	nolecul	es usino				
2. 10	oreactors	mg of h	noiceur	es using				
3 Pr	oviding information on new applications of biotechnology in th	e food	industry	J				
4. Fa	amiliarizing the students with methods of microbial waste mana	gement	and mi	robial				
tre	eatment methods.	5						
Course co	ontents							
Module	Торіс	!	L	Т	Р			
1	Metabolic Engineering and Synthetic Biology		6	3	0			
	Rational genome modifications, strain analysis and							
	characterization, DNA assembly technologies for libraries							
	construction: Homology based (Gibson Assembly, Circular							
	Polymerase Extension Cloning -CPEC, Yeast Transformation	-						
	associated recombination- TAR, seamless ligation cloning ext	ract-						
	SLiCE, Ligase Cycling Reaction- LCR), Restriction based							
	(Biobricks, Golden Gate), Recombinase technologies (Gap-rep	bair,						
	Lambda-red, Multiplex Automated Genome Engineering -MA	GE						
	and CRISPR-Cas9)							
2	Bioprocess Engineering		8	4	0			
	Bioreactor Engineering, Anaerobic and Aerobic Bioreactors;							
	Design, Operation, monitoring and modeling of bioprocesses;							
	Upstream versus Downstream processing; Biochemical and	1						
	biological processes for conversion of biomass to biofuels (etr	lanol,						
	biogas etc.) and value-added chemicals (biochemicals and							
	Basics of Life Cycle Analysis (LCA) and Tachno aconomic	ly,						
	Analyses (TEA) Bioprocess scaleup and Technology Transfer	r						
3	Industrial Biotechnology	-						
5	Enzymes and Microbial Cell Factories: Engineering enzymes							
	Approaches for improving the enzymes functionalities. Enzymes	າຍ						
	production, purification and immobilization Enzymes stabiliz	ation						
	and formulation preparations. Green industrial processes Mic	robial	4	2	0			
	cell factories. High value drugs and nutraceuticals. Bioprospec	ting		_				
	and Bioprocessing: Cell Culture Technology, immobilized cel	1						
	technology							

		and vegetables, micro/nano encapsulation of active food	4	2	0	
		ingredients, nanomaterials for food packaging, nano-sensors for				
food quality and security.						
4		Environmental Biotechnology				
		Fundamentals of Environmental Biotechnology; Pollution				
		abatement (wastewater, biomass waste-agrowaste, sludges,				
		industrial waste): Bioremediation of xenobiotics, Organic waste				
		management: Macrophyte Treatment Systems (MaTS), Algal				
		Treatment Systems (ATS) for resource recovery from wastewater,				
		Integrated resource recovery (IRR), Biological Treatment Methods:				
		in situ techniques (biosparging, bioventing, injection, and recovery	8	4	0	
		method), <i>ex situ</i> methods (land farming, soil banking and soil slurry				
		method), Bioleaching and Biomining, microbial catalyzed				
		electrochemical approaches, phytoremediation; Biomass based				
		biorefineries; Environmental monitoring (Bioindicators -				
		Biomarkers –Biosensors –Biomonitoring –Polluted environment –				
		Short and long term monitoring of remediated sites)				
		Total	30	15	0	
Ev	aluatio	n criteria:				
1.	Minor	test 1 30%				
2. Minor test 2 30%						
3.	3. Major test (end semester) 40%					
Le	arning	outcomes:				
	1. A m	ble to acquire a detailed understanding of various tools and methods en etabolic engineering. (Test 1)	nployed	d for		
	2. A	ble to gain deep insight into the design and functioning of bioreactors u	sed for	upsca	ling	

- 2. Able to gain deep insight into the design and functioning of bioreactors used for upscaling of microbes/products. (Test 2)
- 3. Conceptual understanding about enzymes and applications in industry (Test2)
- 4. Develop understanding and production mechanism on various high value drugs and biobased molecules, and concepts of circular bioeconomy and life cycle analysis. (Test 2 and Test 3)
- 5. Able to capture the concepts of bioremediation, waste management and integrated resource recovery methods. (Test 3)

Pedagogical Approach:

- 1. Lectures and tutorials supported by critical appraisal of original research articles as case studies.
- 2. Peer-reviewed research articles to discuss on various modules in the course.

Skill Set:

- 1. Knowledge of tools and techniques used in metabolic engineering and synthetic biology based on case studies provided.
- 2. Knowledge of biobased molecules, biofuels, and production mechanisms.
- 3. Knowledge of techniques employed in bioremediation, bioleaching and biomining.
- 4. Gain knowledge about nanotechnology and its interdisciplinary endeavours in food biotechnology sectors

Employability:

The course will provide skillsets and knowledge that may play key role to get employed in Universities, R & D industry, Medical centres/Colleges, Research Institutes and Diagnostic centres apart from specialized units like pharma, breweries, food, dairy and agri sectors.

Materials: Suggested Readings

- 1. Stephanopoulos, G. (2012). Synthetic biology and metabolic engineering. *ACS Synth. Biol.* 1, 514–525. doi: 10.1021/sb300094q
- Lee, S., Mattanovich, D. & Villaverde, A. Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact 11, 156 (2012). https://doi.org/10.1186/1475-2859-11-156.
- Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY. Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends Biotechnol. 2019 Aug;37(8):817-837. doi: 10.1016/j.tibtech.2019.01.003. Epub 2019 Feb 5. PMID: 30737009.
- Wang, J. W., Wang, A., Li, K., Wang, B., Jin, S., Reiser, M., et al. (2015). CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning. *BioTechniques* 58, 161–170. doi: 10.2144/000114261
- Liu, R., Bassalo, M. C., Zeitoun, R. I., and Gill, R. T. (2015). Genome scale engineering techniques for metabolic engineering. Metab. Eng. 32, 143–154. doi: 10.1016/j.ymben.2015.09.013
- Nathan Danielson, Sarah McKay, Paul Bloom, Jennifer Dunn, Neal Jakel, Timothy Bauer, John Hannon, Michael C. Jewett, and Brent Shanks.Industrial Biotechnology.Dec 2020.321-332.http://doi.org/10.1089/ind.2020.29230.nda
- 7. Brooks, R., Chambers, M., Nicks, L. and Robonson, B. (1998) Phytomining, Trends in Plant Science, 3:359–62.
- 8. M. A.V. Axelos and M. V. Voorde (2017), Nanotechnology in Agriculture and Food Science, Wiley-VCH Verlag GmbH.
- 9. Q. R. Huang (2012), Nanotechnology in the Food, Beverage and Nutraceutical Industries, Woodhead Publishing, Cambridge, UK
- 10. Bailey, J.E. and Ollis, D.F. Biochemical Engineering Fundamentals, 2nd Ed., McGraw-Hill, p163-172. 1986.
- 11. Ricky Lambert, Bioprocess Engineering, Kaufman Press, ISBN: 9781666888027, 2022.

Additional information (if any): The course framework and modules were designed by Dr. Chaithanya Madhurantakam.

Inputs and suggestions were received from following adjunct faculty (TERI)

1. Dr. Amritpreet Kaur Minhas (Associate Fellow, Centre for Excellence in Agrinanotechnology Sustainable Agriculture, TERI)

2. Dr. Ruchi Agrawal (Associate Fellow, Centre for Excellence in Agrinanotechnology Sustainable Agriculture, TERI)

3. Dr. Shruti Shukla (Fellow/ Senior Scientist, TERI)

Student responsibilities:

1. Study of course material as specified by the instructor.

Reviewers:

- 1. **Dr. Vinay Kumar Tyagi**, Scientist D, Environmental Hydrology Division, National Institute of Hydrology (NIH), Roorkee-247667, Uttarakhand, INDIA.
- 2. **Dr. Vivekanand V**, Ramalingaswami fellow, Biofuels Lab, Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur JLN Marg Jaipur-302 017, Rajasthan, INDIA.
- 3. Dr. Banwari Lal (Senior Director, Environmental & Industrial Biotechnology, TERI).

Course title: Molecular Genetics for Plant Functional Genomics: Principles and Practice								
Course code:	No. of credits: 3	L-T-P: 22-23-0	Learning hours: 45					
Pre-requisite course code and title (if any): None								
Faculty: Anandita Singh	Dej	Department: Department of Biotechnology						
Course coordinator(s): Anandita Sin	ngh Co	Course instructor(s): Anandita Singh, Shashi						
	Bhu	Bhushan Tripathi						
Contact details: asingh@terisas.ac.in	<u>n</u>							
Course type: Core course for Plant	Co	Course offered in: Semester 3						
Biotechnology specialization								

Course description:

Transformative technological solutions emerging from plant biotechnology can tackle sustainability challenges in varied sectors including agriculture, energy, and environment. Crop genomics offers exciting possibilities to enhance production of nutritious food to feed the future world. Bio-synthetic potential of plants is being exploited to harvest solar energy for bio-fuel production and achieving CO₂ sequestration. Nonetheless, true potential of plant sciences is required to be harnessed by way of systematic, large-scale functional studies of candidate genes and intergenic regions at genomewide level. The multi-disciplinary approach of functional genomics aims to unravel the complex relationship between genotype and phenotype. Functional genomics also aims to describe constituents of biological systems and how these interact to manifest traits.

Molecular genetics lies at the heart of functional genomics. The phenotype centric view derived from experimental validation is in sharp contrast with hypothesis driven OMICS and bioinformatics approaches. Analysis of mutant phenotypes, combined with forward mapping strategies are cornerstones for molecular genetics research. Integration of contemporary NGS driven, genome-wide tools, precision phenotyping and genome editing have accelerated gene discovery and functional characterization of genes. Advance statistical models and ML methods have been deployed to fast-track production of superior crops.

This advance level course has been designed to impart an in-depth knowledge on concepts and methodological repertoire of molecular genetics for the purpose of gene discovery and characterization. A basic understanding on principles of molecular biology, genetics and biochemistry is required to fully comprehend the topics covered in this course. Students will be briefly oriented to technologies and various online resources for functional genomics research. However, insights on genomics, genotyping methods, epi-genomics, transcriptomics, proteomics and metabolomics, are to be integrated from other courses taught in the programme. Relevant topics implied in molecular genetics are assembled in five modules given below. Case studies will be used to illustrate power of new technologies in decoding genomes and pangenomes, dissecting genetic architecture of traits, discovering novel alleles and translation of basic knowledge for design of low-input, high-yielding, climate resilient crop varieties.

Course objectives:

Course contents

- 1. Building perspectives on integrative approaches of "Functional Genomics"
- 2. Promoting an understanding on genesis and scope of "Molecular Genetics"
- 3. Creating an in-depth understanding on forward and reverse genetics-based approaches for dissecting genotype-phenotype relationship
- 4. Introducing methodological repertoire of forward and reverse genetics
- 5. Inculcating an appreciation for power of molecular genetics and genomics in unravelling biological function, processes, and phenomena for crop improvement

Course co	Sintents			
Module		L	Т	Р
1	Molecular genetics and functional genomics: An overview	1	5	
	Introduction to genomics, functional genomics and molecular genetics within "OMICS" space, concepts implicit in functional genomics (transcription profiling, genotyping, epigenetic profiling, DNA/RNA-			

	protein interactions, meta-analysis), select <i>in-silico</i> resources for gene prediction and plant functional genomics (Gramine, PlantGDB, FGENESH, eFP Browser, ArrayExpress, PlantPAN), orientation to ENCODE encyclopaedia, molecular genetics and conundrum of "forward-reverse" for establishing genotype-phenotype relationship			
2	Linkage mapping: Identification of causal loci using experimental populations	4	4	
	Linkage mapping and dissection of genetic architecture of traits: Phenotypes and endophenotypes; natural variation and discovery of alleles; construction of linkage maps, bi-parental and multi-parent mapping populations for high resolution trait mapping: F2, RILs (Recombinant Inbred Lines), backcross lines, NILs (Near Isogenic Lines), HIFs (Heterogeneous Inbred Families), AILs (Advanced Inter- cross Lines), pseudo-test-cross mapping, NAM (Nested Association mapping), MAGIC (multi-parent advanced generation inter-cross); map-based cloning (traditional candidate gene sequencing based positional cloning strategies; modern deep sequencing based simultaneous mapping and identification of causal mutation: SHORE maps)			
3	Association mapping: Identification of causal alleles using natural populations	2	2	
	Pangenomics, genomes and super-pangenomes; Linkage Disequilibrium (LD) mapping, Haplotype maps, Genome-wide association studies (GWAS), Case studies on crops including rice, wheat and orphan crops viz. chickpea and pigeonpea			
4	Designing breeding approaches	4	4	
	Marker assisted foreground and background selection (MAS, MABC, MARS); BSA (Bulked Segregant Analysis); natural variation and exotic genetic libraries, introgression lines; classical and modern approaches for enhancing genetic gains; integration of NGS approaches, statistical models and machine learning tools for genomic selection, AI based tools for precision phenotyping, plant to sensor and sensor to plants, GEBVs (Genomics estimated breeding values) in field crop breeding, case studies covering shuttle breeding, speed breeding and integrated framework on fast-forward breeding			
5	Mutant Analysis for Functional Genomics	10	8	
	Approaches for mutagenesis and mutant analyses: Chemical, physical and biological mutagenesis; genetic screens (enhancer, suppressor, modifiers); random and targeted mutagenesis; conceptual understanding of loss-, and gain-of-function mutants; integrated forward and reverse genetics for functional genomics using mutants; Insertional mutagenesis (T-DNA and transposon-tagging); systematic insertional mutagenesis for high-throughput functional genomics; genome-wide mutant libraries; TILLING (Targeted Induced Local Lesions in Genomes), Fast- neutron bombardment (DeleteAgene); RNAi based gene silencing (Intron-hairpin constructs, artificial miRNAs); Ectopic mis-expression, Activation mutagenesis (Enhancer activation tagging, promoter activation tagging) Discovery and functional analysis of cis-regulatory elements: Gene.			

	- the second second to the terms of the second se	1					
	promoters, and promoter traps; expression domain analysis of promoters, two component systems for regulated gene expression						
	Genome editing for gene-function analysis: TALENs and advanced CRISPR derived suites and programmable nucleases for altered gene expression; modification of promoters, coding, non-coding sequences; enigenome editing insertion of reporter gene-drives (knock-ins)						
	Cases studies from model plant <i>A. thaliana</i> : Unravelling molecular basis of developmental and adaptive traits using integrated molecular genetics and functional genomic approaches						
	Total	22	23				
Evaluatio	on criteria:						
1. Mino	r test 1 30%						
2. Mino	r test 2 30%						
3. Major	test (end semester) 40%						
Learning	outcomes:						
1. An in	tegrated view on genetics, genomics and bioinformatics for deciphering m	olecul	ar bas	is			
of pho	enotypes (Test 1-3)	1					
2. An ur	iderstanding on principles of forward mapping, classical reverse genetics a	and ge		s			
2 Tooly	red high-throughput schemes for functional analyses of genomic sequence	s (1es	(1-3)	n			
5. Tech	lical know-now on types of mutagenesis approaches, generation and appro- f_{1} (Test 1.3)	cation	or gai	n-			
4 Persn	ectives on contemporary genome editing methods for gene function analys	ris (Te	ct 1.3)			
Pedagogi	cal Approach:	515 (10	51 1-5	,			
Lectures	tutorials supported by critical appraisal of original research articles review	vs ho	oks an	d			
book char	oters, hands-on-training and demonstration of online resources	15, 000	JR5 un	u			
· · · · · · · · · · · · · · · · · · ·	······						
Skill Set:							
I. Ratio	nalizing deployment of suitable strategies for gene discovery and gene fun	ctiona	l analy	yS1S			
2. Profit	tency in use of relevant <i>in-silico</i> tools and online resources for functional	charac	eteriza	tion			
3 Gener	ics						
4 Const	ructing of linkage maps using contemporary genotyping methods						
5 Using	ratural populations for association mapping of traits						
6. Using	NGS data creatively for trait mapping						
7. Apply	ving MAS, MABC and MARS in breeding programmes						
8. Desig	ning and implementing mutagenesis screens						
9. Gener	ation of knock-out, knock-down, over-expression and genome edited mut	ant lin	es for				
activa	tion or interference of target genomic sequences						
10. Analy	sing mutant genotypes, phenotypes and endo-phenotypes						
11. Innov	ating novel strategies for gene function analysis and characterization of ger	nomic	seque	nces			
Employa	bility:						
1. Geno	typing and sequencing companies						
2. Agri-	biotechnology, agri-genomics and seed companies						
3. Law 1	3. Law firms and knowledge processing organizations, IP management consultancy						
4. Kegu	atory bodies and funding agencies						
Suggester	o; I readings (Donrocantativa)						
Books	i reaungs (Nepresentative)						
1 Sha	rples F (2020) Next Steps for Functional Genomics (Proceedings of a Wo	orksho	n				
Nati	onal Academies of Sciences. Engineering. and Medicine: Division on Far	th and	r, Life				
Stuc	lies: Board on Life Sciences) National Academies Press (US): Washington	1 (DC)	ISBN	[-			
13:	978-0-309-67673-1	() =)					

- Varshney, R., Pandey, M., Chitikineni A. (2018) Plant Genetics and Molecular Biology: Advances in Biochemical Engineering / Biotechnology series number 164, Springer Nature, Switzerland, ISBN: 978-3-319-91312-4
- Varshney, R., Roorkiwal, M., Sorells M. (2017) Genomic Selection for Crop improvement: New Molecular Breeding strategies for crop improvement. Springer Nature, Switzerland, ISBN-10: 3319631683, ISBN-13: 978-3319631684
- 4. Alonso J., M., Stepanova, A., N. (2015) Plant Functional Genomics: Methods and Protocols, Humana Press, ISBN 10: 1493924435, ISBN 13: 9781493924431
- 5. Grotewold, E. (2010) Plant Functional Genomics. Methods and Protocols, Humana Press, ISBN 13: 9781617373862
- Meksem, K., Kahl, G. (2005) The Handbook of Plant Genome Mapping: Genetic and Physical Mapping, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, https://doi.org/10.1002/3527603514

Required texts:

Research articles, reviews on relevant topics, websites and relevant links as provided by the instructor in lectures and tutorials

Student responsibilities:

- 1. Class attendance
- 2. Study of course materials as specified by the instructor
- 3. Self-study

Course Reviewers:

1. Professor Rajeev K Varshney

ML, FTWAS, FAAAS, FAAS, FCSSA, FASA, FNA, FASc, FNASc, FNAAS, Director, State Agricultural Biotechnology Centre, Director, Centre for Crop & Food Innovation, International Chair in Agriculture & Food Security, Food Futures Institute, Murdoch University, Australia

2. **Professor Yashwanti Mudgil** Department of Botany,

University of Delhi, Delhi 110007

Course tit	tle: Gene Expression Analysis and Transcripto	omics								
Course co	Irse code: No. of credits: 2 L-T-P: 30-0-0 Lea 30									
Pre-requi	Pre-requisite course code and title (if any): None									
Departme	ent:									
Course co	ordinator(s): Cou	rse instructor(s):								
Contact d	etails:									
Course ty	pe: Core Cou	Irse offered in: Semester	: 3							
Course de	escription: An understanding of the range of r	nethods available to inter	rogate g	ene						
expression	on a large scale as well as the correct usage a	nd interpretation of high	-through	put da	ta is					
indispensa	ble for the modern biologist. Together with it	s complementary course	on prote	omics	s and					
protein en	gineering, Accordingly, this course provides a	n overview of methods a	vailable	to ana	lyse					
gene trans	cription and complements the course titled "pr	roteomics and protein eng	gineering	. ,,						
Starting w	ith due emphasis to the biological complexity	that high-throughput me	thods ain	1 to						
interrogate	e in the first module, the course moves progres	ssively from a description	of the d	iffere	nt					
techniques	s available and their comparative analysis to an	n overview of the approa	ches to a	nd						
problems	in analysis, integration and biological inference	e. The concluding modu	le introd	uces t	WO					
fast-movir	ig areas of research – meta-omics and single-c	cell omics – and surveys	heir pote	intial	to					
Course of	signts into the neterogeneity of centuar comm	unities.								
	Jecuves:	ot prograssivaly complex	lovala							
1. To pro	able synthesis of isolated information in order	to analyze biological phe	nomena	in a						
2. TO Cha	stually relevant manner	to analyze biological pix	попіспа	m a						
3 To del	lineate the overarching role of evolutionary co	nsiderations at multiple l	evels of							
compl	exity.	insiderations at manipie i	0101001							
Course co	ontents									
S.No	Topic		L	Т	Р					
Module	The biological problem		9							
1										
1	Regulation of gene expression in prokaryote	s and eukaryotes,	3							
	similarities and differences in gene regulatio	n across the domains of								
	life, historical impact of genetic approaches	on the study of gene								
	expression.									
2	Levels of regulation – transcriptional to post	-translational, phenotypi	c 4							
	plasticity and epigenetics; the impact of DNA	A rearrangements on gen	e							
2	expression.	1.1 ' 1 '								
3	Evolutionary considerations in gene regulation	on and their role in	2							
Madula	Tools and techniques for gone expression.	analyzia	0							
2	Tools and techniques for gene expression	allalysis	,							
1	Low to medium throughput methods (blottin	g and PCR).	1	0	0					
2	High throughput platforms/methods – Micro	arravs. RNA-seq.	6	0	0					
	Nanostring, Nanopore, PacBio, pyrosequenc	ing, flow cytometry and								
	phenotyping of single cells									
3	Quality control, comparison of methods – th	eir scope and limitations	2	0	0					
Module	Analysis, inference and integration	-	10							
3										
1	Multiple hypothesis testing and the false disc	covery rate	2	0	0					
2	Normalization, correlation and clustering to	determine differential	8	0	0					
	gene expression, guilt-by-association and reg	gulatory networks								
Module	Prospects and perspectives		2							
4										
	Meta-omics and single-cell omics,		2	1						

Total	30	0	0
Evaluation criteria:	20		
1. Minor test 1 30%			
2. Minor test 2 30%			
3 Major test (end semester) 40%			
on major test (one semester) 1075			
Learning outcomes:			
1. Detailed knowledge of gene regulatory mechanisms in across the three major ki	ngdon	ns and	d the
evolution of regulatory systems. (Test 1).	C		
2. Understanding the methods available to analyse gene expression, their scope and	d limit	tation	S
(Tests 2-3).			
3. Ability to understand the conceptual bases of analytical approaches to derive bid	ologic	al	
information (Tests 2-3).	-		
Pedagogical Approach:			
Lectures, tutorials supported by critical appraisal of original research articles, review	vs, boo	oks aı	nd
book chapters, hands-on-training and demonstration of online resources			
Skill Set:			
1. Design and critical analysis of experimental approaches to analyse gene transcrip	otion.		
2. Interpretation of data from high-throughput approaches.			
3. Formulation of testable hypotheses based on gene expression data.			
Employability:			
1. Academic and industrial research.			
2. Intellectual property firms.			
3. Life science teaching at school and undergraduate levels.			
4. Management and/or supervision of laboratory research in academic/industrial set	tings.		
Materials:			
Required texts		COLL	•
1. Campbell, A. M. & Heyer, L. J. Discovering genomics, proteomics, and bioinform	atics.	(CSH	L
Press : Pearson/Benjamin Cummings, 2007).		10	
2. Conesa, A. <i>et al.</i> A survey of best practices for RNA-seq data analysis. <i>Genome Bi</i>	<i>ol</i> . 1 7,	, 13	
(2016).	1 0		
3. DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic contribution and genetic contribution of the second se	rol of	gene	
expression on a genomic scale. <i>Science</i> 278, 680–686 (1997).		C:1:	
4. Hugnes, 1. R. et al. widespread an euploidy revealed by DNA microarray expression $N_{\rm eff} = \frac{25}{222} \frac{227}{2000}$	on pro	ming	•
Nat. Genet. 23, 555–557 (2000).		1. 1.	
5. Kirlenko, N. V. & Fay, D. S. Transcriptome profiling of the C. elegans KD ortholog	<i>z</i> revea	als div	verse
developmental foles. Dev. Biol. 305, 074–084 (2007).	(a da	Loco	~ T
0. whiteopp, r.J. Evolution of Gene Expression. <i>In</i> The Finiteton Guide to Evolution P. et al.) 412–410 (Dringston University Press, 2012). doi:10.1515/0781400848065.0	(eas. 59	LOSO	s, J.
D. et al.) 415–419 (Princeton University Press, 2015). doi:10.1515/9781400848005-0.	20. 2)		
7. Loven, J. et al. Revisiting global gene expression analysis. Cell 131, 470–462 (201 8. Noble, W. S. How does multiple testing correction work? Nat. Pictachuol. 27, 112	∠). 5 112	7 (20	00)
8. Noble, W. S. How does multiple testing concerning work? <i>Nut. Diolectifiot.</i> 27, 115.	3-113	/ (20	09).
bechnology Nature 409 922–927 (2001)	Jarray		
10 Wang B Kumar V Olson A & Ware D Reviving the Transcriptome Studies	• An Iı	nciaht	Into
the Emergence of Single-Molecule Transcriptome Sequencing Front Const 10 224	. 7010 (2010) J	. muo
11 Karabalil B Overview of Systems Biology and Omics Technologies Curr Mad	Chan). 1 72	
11. Katanani, B. Overview of Systems Biology and Onnes Technologies. Curr. Mea.	Cheff	ı. 43 ,	
4221 4230 (2016)			nio
4221–4230 (2016). 12 Martins R. P. The concentual structure of evolutionary biology. A framework fro	mnh	norv	
 4221–4230 (2016). 12. Martins, R. P. The conceptual structure of evolutionary biology: A framework from plasticity. <i>Eur. J. Ecol.</i> 4, 111–123 (2018). 	m phe	enotyp	лс
 4221–4230 (2016). 12. Martins, R. P. The conceptual structure of evolutionary biology: A framework fro plasticity. <i>Eur. J. Ecol.</i> 4, 111–123 (2018). 13. Stein C. M. Weiskirchen R. Damm F & Strzelecka P. M. Single-cell omics: G. M. Strategie and Structure and Structure	om phe)vervi	ew	JIC

Case studies Suggested readings 1. Ptashne, M. A Genetic Switch, Phage Lambda Revisited. (CSHL Press, 2004, 3rd ed.) Journals Other readings

Additional information (if any):

Student responsibilities:

- 1. Class attendance (online/offline).
- 2. Study/self-study of course materials as specified by the instructor.

3. Ensuring functionality of essential IT hardware & software at their preferred location(s).

Course reviewers:

1. Prof. Vijaya Satchidanandam, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru (superannuated) and Adjunct Professor, St. John's Medical College, Sarjapur Road, Bengaluru – 560034

2. Dr. S. Ramachandran, Chief Scientist, Professor of the AcSIR in the Faculty of Biological Sciences, Room 130, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Near Sukhdev Vihar Bus Depot, New Delhi – 110025

Course title: Proteomics and Protein Engineering										
Course code:No. of credits: 3L-T-P: 45-0-0Learning										
Pre-requisite course code and title (if any): Principles of Biochemistry and Biophysics (BBP161)										
Department: Department of Biotechnology										
Course coordinator:		Course instructor								
Chaithanya Madhurantak	am									
Contact details:										
Course type: Core		Course offered in: Semester 3								

Course description:

Protein engineering has revolutionized the field of biosciences with varied applications and this course will provide students with the concepts along with knowledge of methods and tools used to engineer proteins. Further, the topics in proteomics will deal with outcomes of functional genomics and its applications in the health sector. The myriad of techniques that have evolved in mass spectrometry aiding advanced proteomics will be dealt with in the course.

Course objectives:

- 1. Students will be acquainted with methods and tools for protein synthesis and separation.
- 2. Familiarizing students with various domains and platforms used in Mass Spectrometry and concepts related to advanced MS techniques.
- 3. Students will be provided with the concept of designing proteins, artificial macromolecular scaffolds, and its applications.
- 4. Providing students with information on techniques involved in deciphering the structure function relationship in proteins.
- 5. Familiarizing students with varied applications of engineered proteins.

Course contents			
Module Topic	L	Т	Р
Module 1: Protein Synthesis and Separation			
Protein expression, purification and separation, generation of pH gradients, IEF, 2-			
D PAGE, Cell-free translation systems, Random mutagenesis and selection,			
saturation mutagenesis (impact of mutagenesis on protein structure, solubility, and	10	0	0
function), designed divergent evolution, receptor based QSAR methods, phage			
display, yeast surface display and ribosomal display mechanisms			
Module 2: Proteomics			
Mass Spectrometry (MS): principles, quadrupole, mass analyzers, timescale of			
events in MS, quasi equilibrium theory (QET), unimolecular dissociations in MS,			
mass spectrum and isotopes, data dependent MS/MS, targeted MS/MS (SID-MRM-			
MS), protein identification: N-terminal sequencing, MALDI –TOF, LC-MS/MS,	12	0	0
Tandem-MS/MS. SELDI-TOF, ICAT, I TRAQ (4-plex, 8-plex), MUDPIT, Protein			
interaction maps, analysis of cellular constituents, metabolomics, functional			
proteomics; Clinical and biomedical application of proteomics; Proteome database			
Module 3: Protein design and engineering- components, methods, and tools			_
Molecular scaffolds: Repeat proteins like tetratricopeptide repeats (TPRs), ankyrin			
repeats (ANKs), leucine-rich repeats (LRRs), armadillo repeats (ARMs), and	Q	Δ	0
hexapeptide repeats (HPRs) for diagnostics and PPI studies, artificial protein	0	U	U
design, de novo protein design (ROSETTA), Antibody engineering, Protein chips			
Module 4: Structure function data on proteins			
Structural and functional information through X-ray crystallography, NMR,	8	0	0
Electron Microscopy, computational techniques	0	U	U
Module 5: Engineered protein applications		_	
Peptidomimetics (common intermediate, solid phase synthesis and combinatorial	7	0	0
approaches), stimulus responsive peptide systems, biosensors, drug delivery,	1	U	U

nanodavicas and tissue angineering (hiopolymers) microhial protains (dairy			
nanodevices and dissue engineering (bioporymers), incrobial proteins (daily, pharmaceutical industrial and environmental units)			
Total	45	0	0
Evaluation criteria:		1 -	
1. Minor test 1 30%			
2. Minor test 2 30%			
3. Major test (end semester) 40%			
Learning outcomes:			
1. Able to gain understanding of protein separation and synthesis methods. (Te	est 1)		
2. Acquire a deep insight into the tools and techniques of proteomics with spece $(1 - 1)$	ral en	nphasi	s on
mass spectrometric methods. (Test 1 and Test 2)			
5. An understanding of various design strategies of proteins. (Test 2)	raa di	monoi	onol
4. Able to apprenent the structure function relationship of proteins through the structural analysis (Test 2 and Test 3)	lee-ui	mensi	onai
5 Able to grash applications of engineered proteins (Test 3)			
Pedagogical Approach:			
1. Lectures and tutorials, demonstration of online resources.			
2. Providing case studies to support the concepts.			
3. Peer-reviewed research articles to discuss various modules in the course.			
Skill Set:			
1. Knowledge of protein separation techniques.			
2. Knowledge of tools employed in mass spectrometry, applications and, how	to cha	racteri	ze a
proteome.			
3. Knowledge of methods to design artificial protein scaffolds and applications	s		
Employability:			
The course will provide skillsets and knowledge that may play a key role to g	et em	ploye	d in
Universities, R & D industries, Medical centres/Colleges, Research Institutes and Di	agnos	tic cer	tres
apart from specialized units like pharma, breweries, dairy and agri sectors.			
Materials:			
Suggested Readings			
1. Radziwon K, Weeks AM. Protein engineering for selective proteomics. Cur	r Opir	n Cher	n
Biol. 2021 Feb;60:10-19. doi: 10.1016/j.cbpa.2020.07.003. Epub 2020 Aug	5. PM	IID:	
32768891.			
2. Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with I	ntrabo	odies.	
Trends Biotechnol. 2019 Jun;37(6):578-591. doi: 10.1016/j.tibtech.2018.11.	.009. I	Epub	
2018 Dec 18. PMID: 30577991.			
3. Cerný M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and se	parati	ion of	
posttranslationally modified proteins. J Proteomics. 2013 Oct 30;92:2-27. do	01:		
10.1016/j.jprot.2013.05.040. Epub 2013 Jun 15. PMID: 23///89/.		~	
4. Takubu KK, Nieves E, weiss LW. The Methods Employed in Mass Spectro Analysis of Doctronal Modifications (DTMs) and Protein Protein Inte	rootic		
(PDIs) Adv Exp Mod Biol 2010:1140:160 108 doi: 10.1007/078.2.020.15	050 A	лія 10	
PMID: 31347048: PMCID: 2017,1140.109-190. 001. 10.1007/978-3-050-15	750-4	_10.	
5 Mirza SP Olivier M Methods and approaches for the comprehensive chara	cterize	ation a	nd
quantification of cellular proteomes using mass spectrometry Physiol Geno	mics	2008	Mar
14;33(1):3-11. doi: 10.1152/physiolgenomics.00292.2007. Epub 2007 Dec 2	27. PN	AID:	
18162499; PMCID: PMC2771641.			

 Sawyer N, Gassaway BM, Haimovich AD, Isaacs FJ, Rinehart J, Regan L. Designed phosphoprotein recognition in Escherichia coli. ACS Chem Biol. 2014 Nov 21;9(11):2502-7. doi: 10.1021/cb500658w. Epub 2014 Oct 6. PMID: 25272187; PMCID: PMC4245168.

- Hansen S, Kiefer JD, Madhurantakam C, Mittl PRE, Plückthun A. Structures of designed armadillo repeat proteins binding to peptides fused to globular domains. Protein Sci. 2017 Oct;26(10):1942-1952. doi: 10.1002/pro.3229. Epub 2017 Jul 25. PMID: 28691351; PMCID: PMC5606530.
- Hansen S, Tremmel D, Madhurantakam C, Reichen C, Mittl PR, Plückthun A. Structure and Energetic Contributions of a Designed Modular Peptide-Binding Protein with Picomolar Affinity. J Am Chem Soc. 2016 Mar 16;138(10):3526-32. doi: 10.1021/jacs.6b00099. Epub 2016 Mar 2. PMID: 26878586.
- Ernst P, Plückthun A. Advances in the design and engineering of peptide-binding repeat proteins. Biol Chem. 2017 Jan 1;398(1):23-29. doi: 10.1515/hsz-2016-0233. PMID: 27636831.
- Parmeggiani F, Huang PS. Designing repeat proteins: a modular approach to protein design. Curr Opin Struct Biol. 2017 Aug;45:116-123. doi: 10.1016/j.sbi.2017.02.001. Epub 2017 Mar 3. PMID: 28267654.
- Javadi Y, Itzhaki LS. Tandem-repeat proteins: regularity plus modularity equals designability. Curr Opin Struct Biol. 2013 Aug;23(4):622-31. doi: 10.1016/j.sbi.2013.06.011. Epub 2013 Jul 4. PMID: 23831287.
- Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CPS, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-Based Design of Efficient PET Hydrolases. ACS Catal. 2022 Mar 18;12(6):3382-3396. doi: 10.1021/acscatal.1c05856. Epub 2022 Feb 28. PMID: 35368328; PMCID: PMC8939324.
- Samak NA, Jia Y, Sharshar MM, Mu T, Yang M, Peh S, Xing J. Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environ Int. 2020 Dec;145:106144. doi: 10.1016/j.envint.2020.106144. Epub 2020 Sep 25. PMID: 32987219.
- Jisna VA, Jayaraj PB. Protein Structure Prediction: Conventional and Deep Learning Perspectives. Protein J. 2021 Aug;40(4):522-544. doi: 10.1007/s10930-021-10003-y. Epub 2021 May 28. PMID: 34050498.
- Zhang Y. Protein structure prediction: when is it useful? Curr Opin Struct Biol. 2009 Apr;19(2):145-55. doi: 10.1016/j.sbi.2009.02.005. Epub 2009 Mar 25. PMID: 19327982; PMCID: PMC2673339.

Additional information (if any): The course framework and modules were designed and conceptualized by Dr. Chaithanya Madhurantakam. Further inputs were received from Dr. Pooja Anjali Mazumdar (PhD, IIT KGP), Independent Investigator, New Delhi.

Student responsibilities:

2. Study of course material as specified by the instructor.

Course Reviewers:

1. Dr. Peer Mittl, Senior Scientist, Department of Biochemistry, University of Zurich, Switzerland 2. Dr. Nidhi Pareek, Associate Professor, Deptt. of Sports Bioscience, School of Sports Sciences, Central University of Rajasthan, Bandarsindri, N.H. 8, Kishangarh, Ajmer - 305 817, Rajasthan, India.

Course title	: Bioethics, IPR and Regulations	in Biotec	chı	no	loş	gy	y							
Course cod	e: No. of cr	redits: 3]	L-	·T-	-P	?: 3	39-6	j-0		Lear	ning l	ours	: 45
Pre-requisi	te course code and title (if any): N	one												
Faculty:		Depa	ar	tm	ıer	nt	:: I	Dep	artn	nent	of B	iotech	nolog	sу
Course coo	rdinator(s):	Cou	rs	e i	ns	str	ruo	ctor	(s):					
Contact det	ails:													
Course type	e: Core	Cou	rs	e o	off	fer	rec	l in	: Se	mes	ter 3			
Course des	cription:													
Ethics encor	npass the guiding principles to pres	cribe wha	at i	is	fai	ir	an	d ri	ght.	It i	nclud	es cor	npon	ents
such as valu	es, integrity, morality etc. Consider	ing the in	np	ac	t o	of	m	ode	rn b	iolc	gy ar	nd mea	lical	
research and	its associated socio-economic imp	ortance, r	res	ea	rcl	he	ers	nee	ed to	be	sensi	tive to	the	
ethical oblig	ations while designing and conduct	ing resear	rcl	h a	anc	d (dis	sen	nina	ting	resea	arch o	utcon	nes.
On the other	hand, the perceptions of the societ	y about th	he	SC	ier	nti	ifi	c in	nov	atio	ns are	e not u	nifor	m.
Some consid	ler the innovations as solutions; but	there ma	ay I	ha	ve	e c	con	ncer	ns a	s w	ell.			
The part A of	of the present course deals with the	ethical iss	sue	es	rel	la	tec	1 to	biot	tech	nolog	gy. It s	eeks	to
sensitize the	candidates to wider issues concern	ing the et	thi	cs	in	ı b	oio	tech	nol	ogy	. The	topics	s incl	ude
ethics relating	ng to transparency in scientific valid	lation and	d o	W	ne	ers	shij	p is:	sues	. Fı	rther	, topic	s suc	h as
stem cell tra	nsplantation, xeno-transplantation a	ind the im	npa	act	t o	of 1	rD	NA	-bas	sed	medi	cines of	on the	e
public mora	lity would be discussed. The import	ance of e	effe	ect	tiv	'e	co	mm	uni	cati	on str	ategie	s is a	lso
covered.														
The part B c	eals with the intellectual property r	ights and	re	gu	ıla	ito	ory	iss	ues	rela	ted to	biote	chno	logy.
The course i	ncludes various regulations, nationa	al and inte	err	nat	tio	ona	al,	anc	l tre	atie	s rela	ted to	biolo	gical
processes, re	esearch and materials.													
Course obj	ectives:													
1. Creating	awareness among the students abo	ut ethics	in	re	se	ear	rch	۱.						
2. Impartin	ig knowledge about the relevant nati	onal laws	s a	nd	l re	eg	gula	at10	ns re	elat	ed to	biotec	hnolo	ogical
research	and their products	CIDD						• 1	c		. 1	• , •		• •
3. Providir	ig knowledge about different kinds	of IPRs v	W1	th	es	sp	ec	1al 1	refe	renc	to l	biotec	hnolo	ogical
research														
Course con												т	Т	D
Module												L	I	r
	Part A: Bioethics											10		
-			-											
1	Overview of Bioethics and ethic	al issues i	in	bi	iot	teo	ch	nol	ogy			5		
	Socio-economic issues and broade	er impact	or	1 S	oc	cie	ety							
	Transparency and scientific validation	tion on re	eg	ula	ato	ory	Уp	proc	edu	res				
	Research priorities and ownership	issues												
2	Public Awareness and communi	cation st	tra	ite	gie	es	5				_	5		
	Bioethics involved in experiment	tal anima	als	5 8	anc	d	cli	inic	al r	esea	arch.			
	Developing effective communicat	ion strate	egi	es										
	Dissemination of scientific info	ormation	e	effe	ect	tiv	vel	y i	n c	om	mon			
	language													
	Part B: IPR and Regulations in	Biotechn	ıol	log	gу							29	6	
3	Principles and Perspectives on H	Riotechno	مام	000	v F	Re	201	ılət	ion			7		
5	Trinciples and Terspectives on T	noteenine	010	'gj	уr	in c	gu	nai	1011			,		
	Introduction to legal framework												1	
	Constitution Statutes Rules	Regulat	tio	ns		J	Inc	licia	1	Svs	tem			
	Administrative set up.	Bailat			,	5				~;5	,			
	International Law. Sources. Treati	es											1	
	Principles of Biotechnology Regu	lation											1	
	Risk Assessment Risk Manageme	ent and Ri	jsk	c	ີດາ	m	m	unic	atic	m			1	
	Precautionary principle and preca	utionary a	api	pro	oad	ch	1							

	Country Comparisons on perspectives and approaches to				
	Biotechnology Regulations				
	The U.S. and E.U. approaches on Biotechnology				
	research, Intentional introduction into environment, GM Food,				
	labelling etc.				
4	4 International framework for Biotechnology				
	Multilateral Agreements:				
	Convention on Biological Diversity, Cartagena Protocol on Biosafety,				
	WTO Agreements, Codex Alimentarius, Plant Genetic Resources for				
	Food and Agriculture.				
-	Judicial response to disputes on biotechnology trade and development	0			
5	5 Regulatory Systems in India				
	Environment Protection Act, 1986				
	Rules for the manufacture use import export and storage of				
	hazardous micro- organisms genetically engineered organisms or				
	cells 1989				
	Institutional Structure Powers and Functions				
	Relevant Guidelines and Protocols Other relevant laws				
	The Biological Diversity $\Delta ct_2 2002$				
	Protection of Plant Varieties and Farmer's Pights Act 2001				
	Drugs and Cosmotics Act. Policy and the rules Seed Policy				
	Drugs and Cosnicilles Act, Folicy and the fulles seed Folicy				
	DUFT Notification Recent initiatives				
(Drait National Biolechnology Regulatory Bill 2015	0	4		
0	Intellectual Property Rights	8	4		
	Introduction				
	A Brief history of IP protection				
	TRIPS, Biotechnology and IPR Rationale for IPR				
	Types of IPRs				
	Patents, Copyright, Trademarks, Trade Secrets, Plant				
	Variety protection, Geographical Indications, Farmer's				
	Rights, Traditional Knowledge				
	Biotechnology Innovation and IPR				
	Choice of IP				
	Patentability criteria				
	Relevant Case law				
	Patent protection of biotechnology in US, EU and Indian Patent Act,				
	1970				
	Total	39	6		
Evaluation	criteria:	_			
1. Assignm	nent: 30%				
2. Minor te	est: 20%				
3. Major:	50%				
Learning ou	itcomes: Upon completion of this course the students will have an;				
1. Awareness about ethics in research (Modules 1-2)					
2. Understanding about current laws and regulations related to biodiversity and biotechnology					
(Modules 3-5)					
3. Understanding about IPRs related to biotechnological research (Module 6)					
Pedagogical Approach:					
Lectures and tutorials supported by critical appraisal of original research articles, reviews, books					
and book cha	apters, hands-on-training and demonstration of online resources				

Skill Set:

- 1. Students will have knowledge about the IPR related to agriculture and medical biotechnology.
- 2. Students become able to draft the application for patents, design registration, copyrights, and others.

Employability:

- 1. Law firms and knowledge processing organizations, IP management consultancy
- 2. Regulatory bodies and funding agencies
- 3. Medical biotechnology, Agri-biotechnology, agri-genomics and seed companies

Materials:

Suggested readings (Representative)

- 1. Sreenivasulu N.S. (2016)., Law relating to biotechnology, Oxford University Press, New Delhi.
- 2. K.D. Raju (ed.) (2007), Genetically modified organisms: Emerging law and policy in India, TERI, New Delhi
- 3. P. Narayan (2001), Patent Law, 3rd edn., Eastern Law House, Calcutta
- 4. Kamala Sankaran and Ujjwal Kumar Singh (eds.) (2008), Towards legal literacy: An introduction to Law in India, Oxford, New Delhi
- 5. W.R. Cornish (1999)., Intellectual Property, 4th edn., Sweet & Maxwell, London,
- 6. Jayashree Watal(2001)., Intellectual Property Rights in the WTO and Developing Countries, Oxford, New Delhi,
- 7. F.H. Erbisch and K.M. Maredia (Eds.) (2004)., Intellectual Property Rights in Agricultural Biotechnology, 2nd edn., CABI Publishing, Oxon
- 8. Charles Mc Mannis (ed.) (2007), Biodiversity and the Law, Earthscan, London.
- 9. Report of the Task Force on Application of Agricultural Biotechnology, Ministry of Agriculture, Government of India, (2004).
- 10. National Biotechnology Development Strategy (Draft), Department of Biotechnology, Ministry of Science and Technology, Government of India.
- 11. Shyam Divan and Armin Rosencranz (2005), Environmental Law and Policy in India, 2nd edn., Oxford, New Delhi. Ch.4

Required texts:

Research articles, reviews on relevant topics, websites and relevant links as provided by the instructor in lectures and tutorials

Student responsibilities:

- 1. Class attendance
- 2. Study of course materials as specified by the instructor
- 3. Self-study

Course Reviewers:

- 1. Dr. Zubair Ahmed Khan, Department of Law, Guru Gobind Singh Indraprastha University, Delhi
- 2. Professor Havagiray R. Chitme, Professor of Pharmacology and Head, IPR Cell, DIT University, Dehradun, India

Course code: BBP 107No. of credits: 7L-T-P: (0-0-210)Learning hours: 210							
Pre-requisite course code and title (if any): None							
Department: Department of Biotechnology							
Course coordinator: Course instructor:							
Contact details:							
Course type: CoreCourse offered in: Semester 3							
Course description:							
The objective of this laboratory course is to introduce students to experiments related to							
biotechnology. The course is designed to teach students the utility of various experimental							
methods							
in biotechnology in a problem-oriented manner. The list of experiments given in each module	1S						
representative and includes experiments. Part A will be common for both the streams. Part B i only for Microbial Biotechnology stream whereas Part B2 is only for Plant Biotechnology	18						
stream. The instructor may choose experiments for student's laboratory training as per							
requirements							
Course objectives:							
1. To provide training on standard as well as advanced techniques in the field of molecular							
biology, biochemistry, microbiology and plant biology.							
2. To introduce the students to various techniques of bioinformatics used to analyze DNA, R	NA						
and protein sequences							
3. To train the students in designing experiments with appropriate controls.							
Course contents							
Module Topic	P						
Suggested experiments							
PART A: Common to both streams	150						
1. Searching sequences with BLAST in GenBank (NCBI)							
database							
2. Multiple sequence alignment using ClustalW/MUSCLE							
3. Phylogenetic analysis of proteins and DNA sequences using							
MEGA							
4. Processing of fastq files by							
FastQC/FastP/FastX/Trimmomatic for quality, trimming etc.							
5. Formatting of data files on Galaxy platform							
 Designing of PCK primers with Primer2/Batchprimer5 Homology modelling of protoins 							
7. Homology moderning of proteins 8. Analysis of molecular data using Corehunter or PowerCore							
Core collections							
9. Genotyping of mapping populations with codominant							
markers							
10. Analysis of marker segregation and Chi-square test							
11. Construction of linkage map from SNP data using JoinMap							
11. Construction of linkage map from SNP data using JoinMap 12. QTL mapping in mapping populations using SNP marker							
 11. Construction of linkage map from SNP data using JoinMap 12. QTL mapping in mapping populations using SNP marker data 							
 11. Construction of linkage map from SNP data using JoinMap 12. QTL mapping in mapping populations using SNP marker data 13. Analysis of GWAS using SNP data 							
 11. Construction of linkage map from SNP data using JoinMap 12. QTL mapping in mapping populations using SNP marker data 13. Analysis of GWAS using SNP data 14. Protein Separation Techniques- Purification of target protein 							
 11. Construction of linkage map from SNP data using JoinMap 12. QTL mapping in mapping populations using SNP marker data 13. Analysis of GWAS using SNP data 14. Protein Separation Techniques- Purification of target protein using IMAC 							
 11. Construction of linkage map from SNP data using JoinMap 12. QTL mapping in mapping populations using SNP marker data 13. Analysis of GWAS using SNP data 14. Protein Separation Techniques- Purification of target protein using IMAC 15. Protein Separation Techniques- Purification of target protein 							
 11. Construction of linkage map from SNP data using JoinMap 12. QTL mapping in mapping populations using SNP marker data 13. Analysis of GWAS using SNP data 14. Protein Separation Techniques- Purification of target protein using IMAC 15. Protein Separation Techniques- Purification of target protein using Ion Exchange Chromatography-I 							
 11. Construction of linkage map from SNP data using JoinMap 12. QTL mapping in mapping populations using SNP marker data 13. Analysis of GWAS using SNP data 14. Protein Separation Techniques- Purification of target protein using IMAC 15. Protein Separation Techniques- Purification of target protein using Ion Exchange Chromatography-I 16. Protein Separation Techniques- Purification of target protein 							
 Construction of linkage map from SNP data using JoinMap QTL mapping in mapping populations using SNP marker data Analysis of GWAS using SNP data Protein Separation Techniques- Purification of target protein using IMAC Protein Separation Techniques- Purification of target protein using Ion Exchange Chromatography-I Protein Separation Techniques- Purification of target protein using Ion Exchange Chromatography-I Protein Separation Techniques- Purification of target protein using Ion Exchange Chromatography-II Protein Separation Techniques- Purification of target protein 							

	18. Protein Separation Techniques- Purification of target protein				
	using Gel Exclusion Chromatography-II				
	19. Analysis of purified protein through SDS PAGE and				
	quantification of purified protein				
	20. Salting out method to purify a recombinant target protein				
	21. Packing the chromatographic column for protein purification				
	method				
	PART B1: Microbial Biotechnology			60	
	1. Isolation of endophytic bacteria from different plants				
	2. Isolation of microbes from soil and rhizosphere				
	3. 18S rRNA/ ITS sequencing for identification of fungal				
	isolates				
	4. In-silico analysis: Identification of binding cavity on the				
	surface of a pathogenic protein and docking with potential				
	ligands-I				
	5. In-silico analysis: Identification of binding cavity on the				
	surface of a pathogenic protein and docking with potential				
	ligands-II				
	6. In-silico analysis: Analysis of protein-antibody complex				
	PART B2: Plant Biotechnology			60	
	1. Designing of primers for miRNA quantification				
	2. Designing of guide RNA for CRISPR/Cas9 genome editing				
	3. Pollen viability testing by staining and pollen germination				
	4. Emasculation and controlled crosses to develop F1 hybrids				
	5. Screening for disease resistance (Viral, bacterial, and fungal)				
	in plants				
	6. Screening for salt/ heavy metal tolerance in plants				
	7. Analysis of morphological data with ImageJ software				
Evaluati	ion criteria:			•	
1. Attend	dance: 5%				
2. Prepar	ration of lab record(s) throughout the semester: 25%				
3. End se	emester evaluation: 70% (Following components would be included)				
a) S	Spotting: 15 %				
b) V	Viva-voce: 15 %				
c) H	Experiment(s) assigned on the day of the exam: 40%				
Learnin	g outcomes:				
1. Abili	ity to conduct experiments with adequate safety precautions.				
2. Capa	acity to compare and evaluate various approaches in solving a given ex	perimer	ıtal		
prob	lem.				
3. Abili	ity to design and interpret molecular biology experiments.				
4. Designing experiments with critical thinking, creativity and using a problem-solving approach					
5. Proficiency in defining a research problem, drawing logical inferences from results and					
documenting outcomes in systematic manner.					
Pedagog	gical Approach: Wet lab experiments, demonstrations, calculations, co	mputer	based		
analytical methods used in analysis of DNA, RNA and protein data, writing of experimental					
results and analysis report, visits to different research facilities.					
Skill Set:					
1. Able to work in biotechnology lab and perform experiments					
2. Able to analyses experimental data and critical thinking.					
Employa	ability:				
1. Academic and industrial research					
2. Industries based on biotechnology, pharmacy, and agriculture.					
Materia	ls-				
1 1. 5	Study material and laboratory protocol will be provided by course instru-	lctor.			

- 2. "Biochemistry Laboratory: Modern Theory and Techniques" Rodney Boyer, second Edition, Pearson Education, 2012.
- 3. "Analytical Techniques in Biochemistry and Molecular Biology" Rajan Katoch, Springer, 2011.
- 4. "DNA and protein sequence analysis. A Practical approach" Bishop M.J., Rawlings C.J. (Eds.)1997.

Website

1. https://nptel.ac.in/

Journals

1. Peer reviewed relevant scientific journals.

Advanced Reading Material

Will be provided by instructor if require.

Additional information (if any)

List of experiments given in each module are representative, instructor may choose any of them for student's laboratory training as per requirements.

Student responsibilities

1. Class attendance.

- 2. Study of course materials as specified by the instructor.
- 3. Regular submission of given class assignments.

Reviewers

- 1. Professor Bijoy Neog, Professor, Department of Life Sciences, Dibrugarh University, Assam
- 2. Dr. Tapan K Mondal, Principal Scientist, ICAR-NIPB, Pusa Campus, New Delhi
- 3. Dr. Rupesh Deshmukh, Associate Professor, Plaksha University, Mohali, Punjab

Programme structure							
Semester	Course No.	Course Title	Туре	Number of Credits	No. of L-T-P	Course Coordinator	
Semester 1	NRE 113	Applied mathematics	Core	0	33-12-0	Dr Montu Bose	
Semester 1	BBP 111	Bioanalytical techniques	Core	3	39-6-0	Dr Udit Soni	
Semester 1	BBP 174	Bioinformatics and computational biology - Part I	Core	2	22-8-0	Dr Mohammad Zeeshan Ansari	
Semester 1	BBP 105	Biotechnology laboratory - Part 1	Core	7	7-0-196	Prof Ramakrishnan Sitaraman	
Semester 1	NRE 106	Communication Skills and Technical Writing	Core	0	16-14-0	Dr Suneel Deambi	
Semester 1	BBP 158	Conceptual foundations of molecular biology	Core	2	30-0-0	Prof Ramakrishnan Sitaraman	
Semester 1	BBP 123	Plant and Animal Biotechnology	Core	2	30-0-0	Dr Shashi Bhushan Tripathi	
Semester 1	BBP 161	Principles of Biochemistry and Biophysics	Core	2	30-0-0	Dr Chaithanya Madhurantakam	
Semester 1	BBP 155	Principles of genetic engineering and recombinant DNA technology	Core	3	30-15-0	Prof Anandita Singh	
Semester 2	BBP 106	Biotechnology Laboratory - Part 2	Core	7	0-0-210	Prof Anandita Singh	
Semester 2	BBP 144	Conservation Genetics and Genomics	Core	2	30-0-0	Dr Shashi Bhushan Tripathi	
Semester 2	BBP 146	Genome Structure and Diversity: Concepts and Methodologies	Core	3	23-22-0	Prof Anandita Singh	
Semester 2	BBP 115	Introduction to Nanobiotechnology	Core	2	22-8-0	Dr Udit Soni	
Semester 2	BBP 145	Microbial Pathogenesis	PE	2	15-15-0	Prof Ramakrishnan Sitaraman	
Semester 2	BBP 114	Molecular Cell Biology - From Genes to Communities	Core	2	30-0-0	Prof Ramakrishnan Sitaraman	
Semester 2	BBP 131	Molecular Microbiology and Immunology	Core	2	30-0-0	Dr Chaithanya Madhurantakam	
Semester 2	BBP 116	Molecular Plant Physiology and Metabolism	PE	2	30-0-0	Dr Shashi Bhushan Tripathi	
Semester 2	BBP 112	Statistics for The Life Sciences	Core	3	30-15-0	Dr Montu Bose	
Semester 3	BBP 141	Bioethics, IPR and Regulations in Biotechnology	Core	3	39-6-0	Dr Vidhi M Chadda	
Semester 3	BBP 162	Bioprocess Engineering and Environmental Biotechnology	PE	3	30-15-0	Dr Chaithanya Madhurantakam	
Semester 3	BBP 103	Biotechnology Laboratory - Part 3	Core	7	0-0-210	Dr Chaithanya Madhurantakam	
Semester 3	BBP 147	Molecular Genetics for Plant Functional Genomics: Principles and Practice	PE	3	22-23-0	Prof Anandita Singh	
Semester 3	BBP 163	Gene Expression Analysis and Transcriptomics	Core	2	30-0-0	Prof Ramakrishnan Sitaraman	
Semester 3	BBP 164	Proteomics and Protein Engineering	Core	3	45-0-0	Dr Chaithanya Madhurantakam	
Semester 4	BBP 108	Major project	Core	16	0-0-672	Prof Ramakrishnan Sitaraman	

Total credits: 78